Calculate the variance scale exponent of a time series.
Usage
vse(x, m = 0.5, n = NULL, type = c("weak", "strong"))
References
Fu, H., Chen, W., & He, X.-J. (2018). On a class of estimation and test for long memory. In Physica A: Statistical Mechanics and its Applications (Vol. 509, pp. 906–920). Elsevier BV. https://doi.org/10.1016/j.physa.2018.06.092
Examples
## Compute the variance scale exponent of a time series
# Generate a random time series
set.seed(123)
x <- rnorm(1024) # F = H = 0.5 also d = 0
vse(x)
#> [1] 0.4987233
## Compare the result with the Hurst exponent
library(pracma)
# A time series with Hurst exponent 0.72
data("brown72")
x <- brown72 # F = H = 0.72 also d = 0.22
hurstexp(x)
#> Simple R/S Hurst estimation: 0.6628842
#> Corrected R over S Hurst exponent: 0.7378703
#> Empirical Hurst exponent: 0.6920439
#> Corrected empirical Hurst exponent: 0.6577233
#> Theoretical Hurst exponent: 0.5404756
vse(x)
#> [1] 0.7345032
# A time series with Hurst exponent 0.43
xlm <- numeric(1024); xlm[1] <- 0.1
for (i in 2:1024) xlm[i] <- 4 * xlm[i-1] * (1 - xlm[i-1])
x <- xlm # F = H = 0.43 also d = -0.07
hurstexp(x)
#> Simple R/S Hurst estimation: 0.4762169
#> Corrected R over S Hurst exponent: 0.4722421
#> Empirical Hurst exponent: 0.4872281
#> Corrected empirical Hurst exponent: 0.4460807
#> Theoretical Hurst exponent: 0.5404756
vse(x)
#> [1] 0.3793589