Introduction
Methods for calculating the variance scale exponent to identify memory patterns in time series data. Includes tests for white noise, short memory, and long memory. See Fu, H. et al. (2018)<doi:10.1016/j.physa.2018.06.092>.
Installation
You can install the development version of vse4ts from GitHub with:
# install.packages("devtools")
devtools::install_github("z-my-cn/vse4ts")
Example
Here is a basic example of how to use the vse
function in the vse4ts package:
This package also provides two hypothesis test functions Wnoise.test
and SLmemory.test
to test the white noise and short/long memory of a time series, respectively. Here is an example of how to use the Wnoise.test
function and SLmemory.test
function in the vse4ts package:
library(vse4ts)
# install.packages("pracma")
library(pracma)
data("brown72")
x <- brown72
# Test white noise
Wnoise.test(x)
#> Wnoise Test
#>
#> Wnoise statistic: 135.1091
#> degrees of freedom: 31
#> p-value: 5.884182e-15
#>
#> alternative hypothesis: non-independent stochastic process
# Test long memory
SLmemory.test(x)
#> SLmemory Test
#>
#> SLmemory statistic: 21.20841
#> degrees of freedom: 31
#> p-value: 0.09369624
#>
#> alternative hypothesis: long memory